
Local ProcessingPrototyping:
Benchmark

Juan Miguel Carceller and Pip Hamilton

University College London, Imperial College London

February 22, 2021

1

Outline

▶ Last call, answering the question of How much processing can we done for monitoring came up

▶ Limits were set on 1 core per APA

▶ We took some raw data from ProtoDUNE and implemented a simple benchmark

2

The data

▶ We are using data coming from long-readouts

▶ https://wiki.dunescience.org/wiki/ProtoDUNE-SP_long_TPC_readout

▶ We downloaded to our pcs the file felix-2020-06-02-101141.0.2.0.bin (how to make cmake work in dunegpvms?)

▶ Around 1 GB, 1 s of data

▶ The file contains arrays of WIB frames, data coming from a single FELIX link (256 channels)

▶ Frames are separated by 25 ticks of the master clock (2 MHz) = 500 ns

3

https://wiki.dunescience.org/wiki/ProtoDUNE-SP_long_TPC_readout

The benchmark

▶ We use a modified version of a script by Phil. Rodrigues to read data from binary:

▶ dumpfile-to-text.cpp would dump all the info to a text file

▶ https://github.com/philiprodrigues/felix-long-readout-tools

▶ Modifications: it’s the input to our light histogram class, it’s also timed and it doesn’t output all the info
to a text file as before

▶ CMakeLists.txt modified to include optimization flags

4

https://github.com/philiprodrigues/felix-long-readout-tools

Histogram class

▶ To avoid using ROOT, a very
simple histogram class was
implemented with the basic
functions of TH1

hist.h

#include <vector>
#include <string>

class Hist {

int FindBin(double x);

public:
double fLow, fHigh, fStepSize;
int fNentries;
double fSum;

int fSteps;
std::vector<int> fEntries;

Hist(int steps, double low, double
high);

int Fill(double x);

void Save(std::string filename);
void Save(std::ofstream &filehandle);

};

5

Histogram class

▶ To avoid using ROOT, a very
simple histogram class was
implemented with the basic
functions of TH1

hist.cpp

Hist::Hist(int steps, double low,
double high)
: fSteps(steps), fLow(low), fHigh(

high)
{
fEntries = std::vector<int> (steps,
0);

fStepSize = (high − low) / steps;
}

6

Histogram class

▶ To avoid using ROOT, a very
simple histogram class was
implemented with the basic
functions of TH1

hist.cpp

int Hist::FindBin(double x){
return (x − fLow) / fStepSize;

}

int Hist::Fill(double x){
int bin = FindBin(x);
/ / U n d e r f l o w , d o n o t h i n g
if(bin < 0) return −1;

/ / O v e r f l o w , d o n o t h i n g
if(bin >= fSteps) return −1;

fEntries[bin]++;
fNentries++;
fSum += x;
return bin;

}

7

Histogram class

▶ To avoid using ROOT, a very
simple histogram class was
implemented with the basic
functions of TH1

hist.cpp

void Hist::Save(std::ofstream &
filehandle){
filehandle << fSteps << " " << fLow
<< " " << fHigh << " " << std::
endl;

for (auto x: fEntries)
filehandle << x << " ";

filehandle << std::endl;
}

8

Results

▶ The benchmark is run for batches of 10k frames (5 ms of data-taking, more or less similar to a DUNE
event)

▶ For each batch a histogram is filled for every channel and saved to a text file

Output:

Total elapsed (sec, wall time): 0.373
Total elapsed (sec, processing batch time without saving): 0.0448734
Total elapsed (sec, processing batch time with saving): 0.369829

9

Some math

▶ Only processing, 0.045 s for 214 batches of 10k frames (5 ms), that’s .2 ms for each batch for a single
histogram per channel - 2 ms per APA

▶ Counting saving time to a text file (may not be optimal), it’s 1.73 ms - 17.3 ms per APA

▶ Adding another histogram increases time by ∼ 2

10

Cross-check

▶ A small pyROOT script is used to check that these histograms that we are saving are good

import ROOT

f = open(’hist_12.txt’)
steps, low, high = list(map(int, f.readline().split()))
entries = list(map(int, f.readline().split()))

h = ROOT.TH1F(’hist’, ’hist’, steps, low, high)

for i in range(1, len(entries)+1):
h.SetBinContent(i, entries[i−1])

h.Draw()

input(’Press enter to finish’)

11

Output
▶ One example of histogram from the text file outputs

hist
Entries 100
Mean 2352
Std Dev 39.84

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

hist
Entries 100
Mean 2352
Std Dev 39.84

hist

12

Output

▶ One file for each batch

13

Output
▶ Example of a file, two rows for each histogram, the first one with the number of steps, low limit and

high limit and the second row with the entries in each bin

14

Backup

15

